A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow

نویسندگان

  • Harald Garcke
  • Michael Hinze
  • Christian Kahle
چکیده

A new time discretization scheme for the numerical simulation of two-phase ow governed by a thermodynamically consistent di use interface model is presented. The scheme is consistent in the sense that it allows for a discrete in time energy inequality. An adaptive spatial discretization is proposed that conserves the energy inequality in the fully discrete setting by applying a suitable post processing step to the adaptive cycle. For the fully discrete scheme a quasi-reliable error estimator is derived which estimates the error both of the ow velocity, and of the phase eld. The validity of the energy inequality in the fully discrete setting is numerically investigated. ∗The authors gratefully acknowledge the nancial support by the Deutsche Forschungsgemeinschaft through the priority program SPP1506 entitled Transport processes at uidic interfaces . †Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg. ‡Fachbereich Mathematik, Universität Hamburg, Bundesstraÿe 55, 20146 Hamburg. §Fachbereich Mathematik, Universität Hamburg, Bundesstraÿe 55, 20146 Hamburg.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density

We consider in this paper numerical approximations of two-phase incompressible flows with different densities and viscosities. We present a variational derivation for a thermodynamically consistent phase-field model that admits an energy law. Two decoupled time discretization schemes for the coupled nonlinear phase-field model are constructed and shown to be energy stable. Numerical experiments...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach

We present in this note a unified approach on how to design simple, efficient and energy stable time discretization schemes for the Allen-Cahn or Cahn-Hilliard Navier-Stokes system which models twophase incompressible flows with matching or non-matching density. Special emphasis is placed on designing schemes which only require solving linear systems at each time step while satisfy discrete ene...

متن کامل

Energy Stable Schemes for Cahn-Hilliard Phase-Field Model of Two-Phase Incompressible Flows∗∗∗

Numerical approximations of Cahn-Hilliard phase-field model for the two-phase incompressible flows are considered in this paper. Several efficient and energy stable time discretization schemes for the coupled nonlinear Cahn-Hilliard phase-field system for both the matched density case and the variable density case are constructed, and are shown to satisfy discrete energy laws which are analogou...

متن کامل

A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows with Different Densities and Viscosities

Modeling and numerical approximation of two-phase incompressible flows with different densities and viscosities are considered. A physically consistent phase-field model that admits an energy law is proposed, and several energy stable, efficient, and accurate time discretization schemes for the coupled nonlinear phase-field model are constructed and analyzed. Ample numerical experiments are car...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014